Skip to main content

MIT AEROSPACE ENGINEERS INVENT CARBON NANO -STITCHES FOR COMPOSITE MATERIALS " CONTD"

The researchers fastened the layers of composite materials together using carbon nanotubes — atom-thin rolls of carbon that, despite their microscopic stature, are incredibly strong. They embedded tiny “forests” of carbon nanotubes within a glue-like polymer matrix, then pressed the matrix between layers of carbon fiber composites. The nanotubes, resembling tiny, vertically-aligned stitches, worked themselves within the crevices of each composite layer, serving as a scaffold to hold the layers together.
In experiments to test the material’s strength, the team found that, compared with existing composite materials, the stitched composites were 30 percent stronger, withstanding greater forces before breaking apart.
Roberto Guzman, who led the work as an MIT postdoc in the Department of Aeronautics and Astronautics (AeroAstro), says the improvement may lead to stronger, lighter airplane parts — particularly those that require nails or bolts, which can crack conventional composites.
“More work needs to be done, but we are really positive that this will lead to stronger, lighter planes,” says Guzman, who is now a researcher at the IMDEA Materials Institute, in Spain. “That means a lot of fuel saved, which is great for the environment and for our pockets.”
The study’s co-authors include AeroAstro professor Brian Wardle and researchers from the Swedish aerospace and defense company Saab AB.
Carbon Nanotube Stitches
The researchers’ technique integrates a scaffold of carbon nanotubes within a polymer glue. They first grew a forest of vertically-aligned carbon nanotubes and transferred it onto a sticky, uncured composite layer. Then they repeated the process to generate a stack of 16 composite plies, with carbon nanotubes glued between each layer.
“Size matters”
Today’s composite materials are composed of layers, or plies, of horizontal carbon fibers, held together by a polymer glue, which Wardle describes as “a very, very weak, problematic area.” Attempts to strengthen this glue region include Z-pinning and 3-D weaving — methods that involve pinning or weaving bundles of carbon fibers through composite layers, similar to pushing nails through plywood, or thread through fabric.
“A stitch or nail is thousands of times bigger than carbon fibers,” Wardle says. “So when you drive them through the composite, you break thousands of carbon fibers and damage the composite.”
Carbon nanotubes, by contrast, are about 10 nanometers in diameter — nearly a million times smaller than the carbon fibers.
“Size matters, because we’re able to put these nanotubes in without disturbing the larger carbon fibers, and that’s what maintains the composite’s strength,” Wardle says. “What helps us enhance strength is that carbon nanotubes have 1,000 times more surface area than carbon fibers, which lets them bond better with the polymer matrix.”
Stacking up the competition
Guzman and Wardle came up with a technique to integrate a scaffold of carbon nanotubes within the polymer glue. They first grew a forest of vertically-aligned carbon nanotubes, following a procedure that Wardle’s group previously developed. They then transferred the forest onto a sticky, uncured composite layer and repeated the process to generate a stack of 16 composite plies — a typical composite laminate makeup — with carbon nanotubes glued between each layer.
To test the material’s strength, the team performed a tension-bearing test — a standard test used to size aerospace parts — where the researchers put a bolt through a hole in the composite, then ripped it out. While existing composites typically break under such tension, the team found the stitched composites were stronger, able to withstand 30 percent more force before cracking.
The researchers also performed an open-hole compression test, applying force to squeeze the bolt hole shut. In that case, the stitched composite withstood 14 percent more force before breaking, compared to existing composites.
“The strength enhancements suggest this material will be more resistant to any type of damaging events or features,” Wardle says. “And since the majority of the newest planes are more than 50 percent composite by weight, improving these state-of-the art composites has very positive implications for aircraft structural performance.”
Stephen Tsai, emeritus professor of aeronautics and astronautics at Stanford University, says advanced composites are unmatched in their ability to reduce fuel costs, and therefore, airplane emissions.
“With their intrinsically light weight, there is nothing on the horizon that can compete with composite materials to reduce pollution for commercial and military aircraft,” says Tsai, who did not contribute to the study. But he says the aerospace industry has refrained from wider use of these materials, primarily because of a “lack of confidence in [the materials’] damage tolerance. The work by Professor Wardle addresses directly how damage tolerance can be improved, and thus how higher utilization of the intrinsically unmatched performance of composite materials can be realized.”
This work was supported by Airbus Group, Boeing, Embraer, Lockheed Martin, Saab AB, Spirit AeroSystems Inc., Textron Systems, ANSYS, Hexcel, and TohoTenax through MIT’s Nano-Engineered Composite aerospace STructures (NECST) Consortium and, in part, by the U.S. Army.

Comments

Popular posts from this blog

How Did We Learn to Fly Like the Birds? Myths and Legends of Flight Greek Legend - Pegasus Bellerophon the Valiant, son of the King of Corinth, captured Pegasus, a winged horse. Pegasus took him to a battle with the triple headed monster, Chimera. Icarus and Daedalus - An Ancient Greek Legend Daedalus was an engineer who was imprisoned by King Minos. With his son, Icarus, he made wings of wax and feathers. Daedalus flew successfully from Crete to Naples, but Icarus, tired to fly too high and flew too near to the sun. The wings of wax melted and Icarus fell to his death in the ocean. King Kaj Kaoos of Persia King Kaj Kaoos attached eagles to his throne and flew around his kingdom. Alexander the Great Alexander the Great harnessed four mythical wings animals, called Griffins, to a basket and flew around his realm. Early Efforts of Flight Around 400 BC - China The discovery of the kite that could fly in the air by the Chinese started humans

Flying Commuter Jettison Craft Type To Exist Soon

Passenger jets and drones are not the only vehicles that will need to talk to each other in the none-too-far-off future. Though flight-minded laymen still have not seen a Jetsons-like age arrive, the personal air commute is, at least, closer than it was before. Jet pack ideas abound, (such as the Martin Jetpack and Marc Newson’s “Body Jet”) and  flying cars  are on the make (for example, Terrafugia and Moller International’s Skycar). Sure, the morning commute is not likely to crowd the sky the way it does our streets anytime soon. However, if the air is thick with nine-to-fivers, there will have to be some traffic system in place. Current air-traffic control is not designed to handle localized takeoffs and landings. But, just as vehicle-to-vehicle communication is soon to keep automatic cars from colliding, aircraft-to-aircraft interaction is soon to make the man in manned aircraft a little less necessary. Congress has ordered the FAA to pave the way—legally and technically—for un

Autopilot technology

Autopilot technology drives Teslas but comes with warning s July 21, 2016 by Abosede peter In this Sept. 29, 2015 file photo, Elon Musk, CEO of Tesla Motors Inc., introduces the Model X car at the company's headquarters in Fremont, Calif. A Tesla in Autopilot mode can drive itself but it's not a "self-driving" vehicle, at least … more A Tesla in Autopilot mode can drive itself but it's not a "self-driving" vehicle, at least as far as safety regulators are concerned. So, instead of coming under heavy government scrutiny before being sold to the public, Tesla can mass-produce cars that automatically adjust speed with the flow of traffic, keep their lane and slam the brakes in an emergency. Tesla tells its customers to stay alert while driving, only use the technology on divided highways, keep their hands on the wheel and be prepared to take over should the technology fail. Some clearly don't—online videos, including some with the "dri