Skip to main content

Mar curiosity Robot ,inspect rock layers

NASA’s Curiosity Rover Views Layered Rock Formations

September 13, 2016

The layered geologic past of Mars is revealed in stunning detail in new color images from NASA’s Curiosity Mars Rover, which is currently exploring the “Murray Buttes” region of lower Mount Sharp.

Curiosity took the images with its Mast Camera (Mastcam) on September 8. The rover team plans to assemble several large, color mosaics from the multitude of images taken at this location in the near future.

“Curiosity’s science team has been just thrilled to go on this road trip through a bit of the American desert Southwest on Mars,” said Curiosity Project Scientist Ashwin Vasavada, of NASA’s Jet Propulsion Laboratory, Pasadena, California.

The Martian buttes and mesas rising above the surface are eroded remnants of ancient sandstone that originated when winds deposited sand after lower Mount Sharp had formed.

“Studying these buttes up close has given us a better understanding of ancient sand dunes that formed and were buried, chemically changed by groundwater, exhumed and eroded to form the landscape that we see today,” Vasavada said.

The new images represent Curiosity’s last stop in the Murray Buttes, where the rover has been driving for just over one month. As of this week, Curiosity has exited these buttes toward the south, driving up to the base of the final butte on its way out. In this location, the rover began its latest drilling campaign (on September 9). After this drilling is completed, Curiosity will continue farther south and higher up Mount Sharp, leaving behind these spectacular formations.

Curiosity landed near Mount Sharp in 2012. It reached the base of the mountain in 2014 after successfully finding evidence on the surrounding plains that ancient Martian lakes offered conditions that would have been favorable for microbes if Mars has ever hosted life. Rock layers forming the base of Mount Sharp accumulated as sediment within ancient lakes billions of years ago.

On Mount Sharp, Curiosity is investigating how and when the habitable ancient conditions known from the mission’s earlier findings evolved into conditions drier and less favorable for life.

Comments

Popular posts from this blog

MIT AEROSPACE ENGINEERS INVENTED NEW NANOSTITCHES FOR COMPOSITE MATERIALS

MIT Aerospace Engineers Develop Carbon Nanotube “Stitches” to Strengthen Composites August 8, 2016 Technology MIT aerospace engineers have found a way to bond composite layers, producing a material that is substantially stronger and more resistant to damage than other advanced composites. The improvement may lead to stronger, lighter airplane parts. Using carbon nanotube “stitches,” aerospace engineers from MIT have found a way to strengthen composites, helping make airplane frames lighter and more damage-resistant. The newest Airbus and Boeing passenger jets flying today are made primarily from advanced composite materials such as carbon fiber reinforced plastic — extremely light, durable materials that reduce the overall weight of the plane by as much as 20 percent compared to aluminum-bodied planes. Such lightweight airframes translate directly to fuel savings, which is a major point in advanced composites’ favor. But composite materials are also surprisingly vuln...

Welcome to the Beginner's Guide to Aerodynamics

Welcome to the Beginner's Guide to Aerodynamics What is aerodynamics? The word comes from two Greek words: aerios , concerning the air, and dynamis , which means force. Aerodynamics is the study of forces and the resulting motion of objects through the air. Judging from the story of Daedalus and Icarus, humans have been interested in aerodynamics and flying for thousands of years, although flying in a heavier-than-air machine has been possible only in the last hundred years. Aerodynamics affects the motion of a large airliner, a model rocket, a beach ball thrown near the shore, or a kite flying high overhead. The curveball thrown by big league baseball pitchers gets its curve from aerodynamics. ...

Flying Commuter Jettison Craft Type To Exist Soon

Passenger jets and drones are not the only vehicles that will need to talk to each other in the none-too-far-off future. Though flight-minded laymen still have not seen a Jetsons-like age arrive, the personal air commute is, at least, closer than it was before. Jet pack ideas abound, (such as the Martin Jetpack and Marc Newson’s “Body Jet”) and  flying cars  are on the make (for example, Terrafugia and Moller International’s Skycar). Sure, the morning commute is not likely to crowd the sky the way it does our streets anytime soon. However, if the air is thick with nine-to-fivers, there will have to be some traffic system in place. Current air-traffic control is not designed to handle localized takeoffs and landings. But, just as vehicle-to-vehicle communication is soon to keep automatic cars from colliding, aircraft-to-aircraft interaction is soon to make the man in manned aircraft a little less necessary. Congress has ordered the FAA to pave the way—legally and technical...