Skip to main content

Flying Commuter Jettison Craft Type To Exist Soon

Passenger jets and drones are not the only vehicles that will need to talk to each other in the none-too-far-off future. Though flight-minded laymen still have not seen a Jetsons-like age arrive, the personal air commute is, at least, closer than it was before. Jet pack ideas abound, (such as the Martin Jetpack and Marc Newson’s “Body Jet”) and flying cars are on the make (for example, Terrafugia and Moller International’s Skycar). Sure, the morning commute is not likely to crowd the sky the way it does our streets anytime soon. However, if the air is thick with nine-to-fivers, there will have to be some traffic system in place.
Current air-traffic control is not designed to handle localized takeoffs and landings. But, just as vehicle-to-vehicle communication is soon to keep automatic cars from colliding, aircraft-to-aircraft interaction is soon to make the man in manned aircraft a little less necessary. Congress has ordered the FAA to pave the way—legally and technically—for unmanned aircraft systems to fly in U.S. airspace by 2015. Flying commuters can piggyback on those changes.

Comments

Popular posts from this blog

Welcome to the Beginner's Guide to Aerodynamics

Welcome to the Beginner's Guide to Aerodynamics What is aerodynamics? The word comes from two Greek words: aerios , concerning the air, and dynamis , which means force. Aerodynamics is the study of forces and the resulting motion of objects through the air. Judging from the story of Daedalus and Icarus, humans have been interested in aerodynamics and flying for thousands of years, although flying in a heavier-than-air machine has been possible only in the last hundred years. Aerodynamics affects the motion of a large airliner, a model rocket, a beach ball thrown near the shore, or a kite flying high overhead. The curveball thrown by big league baseball pitchers gets its curve from aerodynamics. ...

Mar curiosity Robot ,inspect rock layers

NASA’s Curiosity Rover Views Layered Rock Formations September 13, 2016 The layered geologic past of Mars is revealed in stunning detail in new color images from NASA’s Curiosity Mars Rover, which is currently exploring the “Murray Buttes” region of lower Mount Sharp. Curiosity took the images with its Mast Camera (Mastcam) on September 8. The rover team plans to assemble several large, color mosaics from the multitude of images taken at this location in the near future. “Curiosity’s science team has been just thrilled to go on this road trip through a bit of the American desert Southwest on Mars,” said Curiosity Project Scientist Ashwin Vasavada, of NASA’s Jet Propulsion Laboratory, Pasadena, California. The Martian buttes and mesas rising above the surface are eroded remnants of ancient sandstone that originated when winds deposited sand after lower Mount Sharp had formed. “Studying these buttes up close has given us a better understanding of ancient sand dunes that forme...