Welcome to the Beginner's Guide to Aerodynamics | ||||
![]() |
||||
What is aerodynamics? The word comes from two Greek words: aerios, concerning the air, and dynamis, which means force. Aerodynamics is the study of forces and the resulting motion of objects through the air. Judging from the story of Daedalus and Icarus, humans have been interested in aerodynamics and flying for thousands of years, although flying in a heavier-than-air machine has been possible only in the last hundred years. Aerodynamics affects the motion of a large airliner, a model rocket, a beach ball thrown near the shore, or a kite flying high overhead. The curveball thrown by big league baseball pitchers gets its curve from aerodynamics. | ||||
At this Web site you can study aerodynamics at your own pace and to your own level of interest. Some of the topics included are: Newton's basic equations of motion; the motion of a free falling object, that neglects the effects of aerodynamics; the terminal velocity of a falling object subject to both weight and air resistance; the three forces (lift, drag, and weight) that act on a glider; and finally, the four forces that act on a powered airplane. Because aerodynamics involves both the motion of the object and the reaction of the air, there are several pages devoted to basic gas properties and how those properties change through the atmosphere. There is a special section of the Beginner's Guide which deals with compressible, or high speed, aerodynamics. This section is intended for undergraduates who are studying shock waves or isentropic flows and contains several calculators and simulators for that flow regime. . There are many pages here connected to one another through hyperlinks and you can then navigate through the links based on your own interest and inquiry. There is an Aerodynamics Index of topics that you ![]() |
NASA’s Curiosity Rover Views Layered Rock Formations September 13, 2016 The layered geologic past of Mars is revealed in stunning detail in new color images from NASA’s Curiosity Mars Rover, which is currently exploring the “Murray Buttes” region of lower Mount Sharp. Curiosity took the images with its Mast Camera (Mastcam) on September 8. The rover team plans to assemble several large, color mosaics from the multitude of images taken at this location in the near future. “Curiosity’s science team has been just thrilled to go on this road trip through a bit of the American desert Southwest on Mars,” said Curiosity Project Scientist Ashwin Vasavada, of NASA’s Jet Propulsion Laboratory, Pasadena, California. The Martian buttes and mesas rising above the surface are eroded remnants of ancient sandstone that originated when winds deposited sand after lower Mount Sharp had formed. “Studying these buttes up close has given us a better understanding of ancient sand dunes that forme...
its nice
ReplyDelete